Retrieval of Water Constituents from Hyperspectral In-Situ Measurements under Variable Cloud Cover - A Case Study at Lake Stechlin (Germany)

نویسندگان

  • Anna Göritz
  • Stella A. Berger
  • Peter Gege
  • Hans-Peter Grossart
  • Jens C. Nejstgaard
  • Sebastian Riedel
  • Rüdiger Röttgers
  • Christian Utschig
چکیده

Remote sensing and field spectroscopy of natural waters is typically performed under clear skies, low wind speeds and low solar zenith angles. Such measurements can also be made, in principle, under clouds and mixed skies using airborne or in-situ measurements; however, variable illumination conditions pose a challenge to data analysis. In the present case study, we evaluated the inversion of hyperspectral in-situ measurements for water constituent retrieval acquired under variable cloud cover. First, we studied the retrieval of Chlorophyll-a (Chl-a) concentration and colored dissolved organic matter (CDOM) absorption from in-water irradiance measurements. Then, we evaluated the errors in the retrievals of the concentration of total suspended matter (TSM), Chl-a and the absorption coefficient of CDOM from above-water reflectance measurements due to highly variable reflections at the water surface. In order to approximate cloud reflections, we extended a recent three-component surface reflectance model for cloudless atmospheres by a constant offset and compared different surface reflectance correction procedures. Our findings suggest that in-water irradiance measurements may be used for the analysis of absorbing compounds even under highly variable weather conditions. The extended surface reflectance model proved to contribute to the analysis of above-water reflectance measurements with respect to Chl-a and TSM. Results indicate the potential of this approach for all-weather monitoring.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Atmospheric Correction Performance of Hyperspectral Airborne Imagery over a Small Eutrophic Lake under Changing Cloud Cover

Atmospheric correction of remotely sensed imagery of inland water bodies is essential to interpret water-leaving radiance signals and for the accurate retrieval of water quality variables. Atmospheric correction is particularly challenging over inhomogeneous water bodies surrounded by comparatively bright land surface. We present results of AisaFENIX airborne hyperspectral imagery collected ove...

متن کامل

Water Constituents and Water Depth Retrieval from Sentinel-2A - A First Evaluation in an Oligotrophic Lake

Satellite remote sensing may assist in meeting the needs of lake monitoring. In this study, we aim to evaluate the potential of Sentinel-2 to assess and monitor water constituents and bottom characteristics of lakes at spatio-temporal synoptic scales. In a field campaign at Lake Starnberg, Germany, we collected validation data concurrently to a Sentinel-2A (S2-A) overpass. We compared the resul...

متن کامل

SNR (Signal-To-Noise Ratio) Impact on Water Constituent Retrieval from Simulated Images of Optically Complex Amazon Lakes

Uncertainties in the estimates of water constituents are among the main issues concerning the orbital remote sensing of inland waters. Those uncertainties result from sensor design, atmosphere correction, model equations, and in situ conditions (cloud cover, lake size/shape, and adjacency effects). In the Amazon floodplain lakes, such uncertainties are amplified due to their seasonal dynamic. T...

متن کامل

Preliminary analysis of distributed in situ soil moisture measurements

Surface soil moisture content is highly variable in both space and time. Remote sensing can provide an effective methodology for mapping surface moisture content over large areas but ground based measurements are required to test its reliability and to calibrate retrieval algorithms. Recently, we had the opportunity to design and perform an experiment aimed at jointly acquiring measurements of ...

متن کامل

Remote Sensing Based Retrieval of Snow Cover Properties Case Study (Shirkooh Mountain Yazd, Iran)

Snow cover area is one of the most important criteria to calculate snow melt runoff. This can have an effect on the biology of the plant and the environment of a region. Using the catchment basin physical characteristic to calculate snow cover area is a conventional method, though its accuracy is not good enough. Most of the useful methods in calculating snow cover area are based on satellite i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Remote Sensing

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2018